No Need to Talk: Asynchronous Mixture of Language Models

Anastasiia Filippova † EPFL

Angelos KatharopoulosApple

David Grangier Apple

Ronan Collobert Apple

読む人:清野舜(SB Intuitions)

Mixture of Experts (MoE) とは何か

何か?

Mixture-of-Experts (MoE) とは (1/2)

- 通常:任意のタスクを1つのモデルで解く
 - MoE の文脈では Dense と呼ばれる

Mixture-of-Experts (MoE) とは (2/2)

- MoE: 各タスクを専属のエキスパートに解かせる
 - 各エキスパートのパラメータ数を減らしても表現力が維持可能
 - → 各タスクについての計算量が減らせる

J

世は大MoE祭り

- ・最先端のモデルが採用
 - DeepSeek-V3
 - Llama4
 - gpt-oss
- 国内最大規模のモデルも採用
 - Sarashina2-8x70B
- なぜ流行?
 - 同じ推論コストのDenseモデルよりも高い性能だから?
 - 発表者が本当には分かってない...
 - 「性能」のために必要なコストが大きすぎるのでは?という疑問

TransformerにおけるMoE

- FFN が Expertに相当
- 各時刻・各層で通信を行う

何が問題か?

- 通信が重い
 - 高速なGPU間通信が必要
 - それは高価
- 大量のメモリを消費する
 - Expertを展開しておく必要
 - ・大量のGPUが必要
 - それは高価

何が問題か?

主にこちらを解決

- ・通信が重い
 - 高速なGPU間通信が必要
 - それは高価
- 大量のメモリを消費する
 - Expertを展開しておく必要
 - ・大量のGPUが必要
 - それは高価

こちらは解決 しない?

アイデア: LLMをExpertとみなす

- LLM をExpertとして扱う
- LLM と同じ数のルータを用意する
 - 今回はルータ自体も言語モデル
- 最もスコアの高いルータに 対応するLLMを選ぶ
- 選んだLLMで推論
 - Expert 間の通信は必要ない
 - No Need to Talk の伏線回収

既存のMoE vs 提案手法

- FFN が Expertに相当
- ・各時刻・各層で通信を行う

- LLM をExpertとして扱う
- 選んだLLMで一気通貫に推論

高速化のための

Router

のデザイン

LLM₁

と(ほぼ)同じ推論時間に向けて...

① ルータを軽量にしておく

- 計算コストを小さくするため
- 今回は4.4Mパラメタの言語モデル

② 入力系列の接頭辞を使って振り分け

- 入力系列の全てを振り分けに使う必要はない
- 先頭32トークン程度でも十分な性能が出る
- トークン数を増やした実験は後述

ルータ → LLMの順番に学習

② Expert (LLM) の学習

尤度を計算して振り分け

実験:Denseモデルとの比較

ベースライン:Denseモデル

LLM

提案手法

LLM のパラメータ数は同じ

→推論にかかる時間を揃えて比較

事前学習で性能が改善した

学習コスト

下流タスクでの評価結果は割愛

事前学習で性能が改善した

事前学習で性能が改善した

下流タスクでの評価結果は割愛

ルータの大きさについて

- ルータ:4.4MパラメタのLM
- 直感:大きなルータにすると、 より良い振り分けができそう
- 結果は変わらず
 - 変わらなすぎて実験を疑いたくなる

振り分けに使う接頭辞のトークン数

振り分けに使う接頭辞のトークン数を変えてみた

32トークンってどれくらい?

まとめ

- MoEの計算
- LLMをExpertとみなしたMoEを提案
 - 通信コストが削減できる
 - 高価なGPUに頼らないで済む
- ルータには小型LMを使う
 - 小型LMの尤度で入力系列をスコアリングし、最も確率の高いものを選択
- 事前学習タスクでDenseよりも高い性能

感想

- ・実験が事前学習に閉じており、事後学習への適用可能性に疑問
 - SFT/DPOで振り分けが破綻しそう
 - ICLRのレビューでも指摘されており、著者も認めている
 - ICLRは気合で押し切った
 - ・事前学習と事後学習を一気通貫にやりたい気がする...
 - 本勉強会でそういう論文が紹介される気がしている
- ・エキスパート(LLM)の数を自由に増減させられると嬉しそう
 - ・増やす:ドメイン適用(金融、医療、etc...)
 - 減らす:推論時のコスト削減