
No Need to Talk: Asynchronous 
Mixture of Language Models

読む人：清野舜 (SB Intuitions)

Published as a conference paper at ICLR 2025

NO NEED TO TALK:
ASYNCHRONOUS MIXTURE OF LANGUAGE MODELS

Anastasiia Filippova †

EPFL
Angelos Katharopoulos
Apple

David Grangier
Apple

Ronan Collobert
Apple

ABSTRACT

We introduce SMALLTALK LM, an innovative method for training a mixture of
language models in an almost asynchronous manner. Each model of the mix-
ture specializes in distinct parts of the data distribution, without the need of high-
bandwidth communication between the nodes training each model. At inference,
a lightweight router directs a given sequence to a single expert, according to a
short prefix. This inference scheme naturally uses a fraction of the parameters
from the overall mixture model. Unlike prior works on asynchronous LLM train-
ing, our routing method does not rely on full corpus clustering or access to meta-
data, making it more suitable for real-world applications. Our experiments on lan-
guage modeling demonstrate that SMALLTALK LM achieves significantly lower
perplexity than dense model baselines for the same total training FLOPs and an
almost identical inference cost. Finally, in our downstream evaluations we outper-
form the dense baseline on 75% of the tasks.

1 INTRODUCTION

Recent research has demonstrated that scaling large language models (LLMs) by increasing model
capacity and expanding training data consistently leads to significant performance improvements on
a wide range of downstream tasks (Kaplan et al., 2020; Brown et al., 2020; Henighan et al., 2020;
Hoffmann et al., 2022; Dubey et al., 2024). Scaling introduces substantial operating and engineering
costs for both inference and training. In general, training is achieved on a large number of nodes via
synchronous gradient descent techniques, which relies on high-bandwidth communication to scale.
Inference of large models may require multiple compute nodes to distribute the model, which relies
on low-latency communication. In both cases, state-of-the-art interconnect hardware is critical, and
careful engineering is required to scale, and maintain a large compute cluster. While mainstream
machine learning frameworks have eased the engineering work on the scaling side, access to a large
number of well interconnected nodes remains a privilege in the machine learning community.

In this paper, we explore strategies to mitigate the communication cost of large language models,
both at training and inference, while keeping the inference efficient. We show that efficient training
and inference can be achieved without relying on fast interconnects, and without compromising
model performance, both in terms of perplexity or downstream task accuracy.

In recent studies aimed at mitigating reliance on high-bandwidth interconnects, researchers have
developed algorithms that reduce the need for frequent or comprehensive gradient synchronizations.
Such techniques include asynchronous training (Douillard et al., 2023; Aji & Heafield, 2017; Zhang
et al., 2015; Liu et al., 2024) and gradient compression (Lin et al., 2017; Dettmers, 2016) which
effectively decrease communication overhead. By performing updates less frequently or by commu-
nicating less data, these methods sustain high training throughput while diminishing dependence on
high-speed interconnects. However, these algorithms still require some level of gradient synchro-
nization, and resulting models often under perform (in terms of perplexity) compared to training
approaches synchronizing at every step (Diskin et al., 2021).

Regarding efficient inference, a number of sparse parameter activation techniques have recently
become popular (Shazeer et al., 2017; Fedus et al., 2022; Artetxe et al., 2022; Lewis et al., 2021;
Du et al., 2022), in particular the Switch Transformer mixture of experts (MoE). These approaches
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Mixture of Experts (MoE) とは何か
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何か？
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Mixture-of-Experts（MoE）とは（1/2）

• 通常︓任意のタスクを1つのモデルで解く
–MoEの⽂脈では Dense と呼ばれる
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Denseモデル︓
1つの（巨⼤な）
モデルですべて解く

図はSNLP2024高瀬さんのスライドをお借りしました

https://speakerdeck.com/takase/snlp2024-multiheadmoe
https://speakerdeck.com/takase/snlp2024-multiheadmoe
https://speakerdeck.com/takase/snlp2024-multiheadmoe
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Mixture-of-Experts（MoE）とは（2/2）
• MoE︓各タスクを専属のエキスパートに解かせる

– 各エキスパートのパラメータ数を減らしても表現⼒が維持可能
→各タスクについての計算量が減らせる

3

Denseモデル︓
1つの（巨⼤な）
モデルですべて解く

MoE︓
各エキスパートに
タスクを割り当て

図はSNLP2024高瀬さんのスライドをお借りしました

https://speakerdeck.com/takase/snlp2024-multiheadmoe
https://speakerdeck.com/takase/snlp2024-multiheadmoe
https://speakerdeck.com/takase/snlp2024-multiheadmoe


世は大MoE祭り
•最先端のモデルが採用
• DeepSeek-V3
• Llama4
• gpt-oss

•国内最大規模のモデルも採用
• Sarashina2-8x70B

•なぜ流行？
• 同じ推論コストのDenseモデルよりも高い性能だから？
• 発表者が本当には分かってない…
• 「性能」のために必要なコストが大きすぎるのでは？という疑問
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TransformerにおけるMoE

• FFNが Expertに相当
•各時刻・各層で通信を行う
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Router

FFN1 FFN2 FFN3

xN層



何が問題か？

•通信が重い
• 高速なGPU間通信が必要
• それは高価

•大量のメモリを消費する
• Expertを展開しておく必要
• 大量のGPUが必要
• それは高価
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Router

FFN1 FFN2 FFN3

xN層



何が問題か？

•通信が重い
• 高速なGPU間通信が必要
• それは高価

•大量のメモリを消費する
• Expertを展開しておく必要
• 大量のGPUが必要
• それは高価
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Router

FFN1 FFN2 FFN3

xN層

主にこちらを解決

こちらは解決
しない？



アイデア：LLMをExpertとみなす
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Router1

LLM1 LLM2 LLM3

• LLMをExpertとして扱う
• LLMと同じ数のルータを用意する

• 今回はルータ自体も言語モデル
•最もスコアの高いルータに
対応するLLMを選ぶ
•選んだLLMで推論

• Expert間の通信は必要ない
• No Need to Talkの伏線回収

Router3Router2



既存のMoE vs 提案手法
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Router

FFN1 FFN2 FFN3

xN層

• FFNが Expertに相当
•各時刻・各層で通信を行う

• LLMをExpertとして扱う
•選んだLLMで一気通貫に推論

Router1

LLM1 LLM2 LLM3

Router3Router2



高速化のための のデザイン
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Router1

LLM1 LLM2 LLM3

Router3Router2

Router

① ルータを軽量にしておく
- 計算コストを小さくするため
- 今回は4.4Mパラメタの言語モデル

② 入力系列の接頭辞を使って振り分け
- 入力系列の全てを振り分けに使う必要はない
- 先頭32トークン程度でも十分な性能が出る
- トークン数を増やした実験は後述

LLM1 と(ほぼ)同じ推論時間に向けて…



ルータ→ LLMの順番に学習

12

① ルータの学習

② Expert (LLM) の学習

訓練データ𝑋

訓練データ!!

訓練データ!"

訓練データ!#

尤度を計算して振り分け

Router1

Router2

Router3

言語モデルの学習

繰り返す

訓練データ𝑋

訓練データ!!

訓練データ!"

訓練データ!#

尤度を計算して振り分け 言語モデルの学習

Router1

Router2

Router3

Router1

Router2

Router3

LLM1

LLM2

LLM3



実験：Denseモデルとの比較
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LLM

ベースライン：Denseモデル

提案手法

Router1

LLM1 LLM2 LLM3

Router3Router2

のパラメータ数は同じLLM

→推論にかかる時間を揃えて比較



事前学習で性能が改善した
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(a) FLOPs vs perplexity, 335M.
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(b) FLOPsvs perplexity, 1.3B. (c) Tokens vs perplexity, 1.3B.

Figure 2: Better perplexity for the same price. Test perplexity comparison between our approach
and the dense baseline, as a function of training cost measured in PFLOPs. In (a), we report results
for models with 335M parameters using 4, 8, 16, and 32 experts and in (b) for models with 1.3B
parameters using 4, 16, and 32 experts. In addition, (c) shows the perplexity comparison between
our approach and the dense baseline, plotted against the cumulative number of tokens processed
throughout the training for the 1.3B parameter models. We observe that our method significantly out-
performs the baseline across all experimental configurations. Notably, our 335M parameter model
with 32 experts achieves a perplexity of 9.07, outperforming the 1.3B dense baseline’s perplexity of
9.1. This improvement is achieved with a training budget of 2.5 → 1021 FLOPs, which is compara-
ble to the baseline’s 2.2 → 1021 FLOPs, while requiring three times less computational cost during
inference (0.87→1012 FLOPs compared to 2.81→1012 FLOPs). See § 3.2 and App. A for a detailed
description of our experimental setup.

(a) ARC Challenge (b) ARC Easy (c) HellaSwag (d) MMLU

Figure 3: Downstream evaluation. Accuracy with respect to perplexity on (a) ARC Challenge,
(b) ARC Easy, (c) HellaSwag and (d) MMLU, for 1.3B parameter dense baselines trained on 266B,
1T and 2T tokens (empty symbols) and mixture models with 1.3B parameter experts and 4, 16 and
32 experts respectively (filled symbols). The models that have the same symbol shape have near
identical training and inference FLOPs.

megabytes per router resulting in truly minimal communication requirements. See A.4 for details
about the calculation of these numbers.

3.3 DOWNSTREAM EVALUATION

To demonstrate the applicability of our approach in real-world scenarios, we performed zero-shot
evaluation on a set of natural language processing (NLP) tasks, including ARC Challenge and ARC
Easy (Clark et al., 2018), HellaSwag (Zellers et al., 2019), SciQ (Welbl et al., 2017), and MMLU
(Hendrycks et al., 2020). Figure 3 shows both accuracy and perplexity for each task (see Appendix B
for details regarding perplexity and accuracy computation).

Specifically, our largest configuration, a model with 32 1.3B parameter experts, demonstrates better
performance on four out of five tasks, achieving gains of 3%, 2%, 3%, and 1% on ARC Challenge
(3a), ARC Easy (3b), HellaSwag (3c), and MMLU (3d), respectively, under the same inference cost.

Moreover, on the MMLU benchmark, our approach either beats the baseline or achieves the same
performance on 75% of the tasks (42 out of 56), as shown in Table 4.

7
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下流タスクでの評価結果は割愛

性能

学習コスト
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and the dense baseline, as a function of training cost measured in PFLOPs. In (a), we report results
for models with 335M parameters using 4, 8, 16, and 32 experts and in (b) for models with 1.3B
parameters using 4, 16, and 32 experts. In addition, (c) shows the perplexity comparison between
our approach and the dense baseline, plotted against the cumulative number of tokens processed
throughout the training for the 1.3B parameter models. We observe that our method significantly out-
performs the baseline across all experimental configurations. Notably, our 335M parameter model
with 32 experts achieves a perplexity of 9.07, outperforming the 1.3B dense baseline’s perplexity of
9.1. This improvement is achieved with a training budget of 2.5 → 1021 FLOPs, which is compara-
ble to the baseline’s 2.2 → 1021 FLOPs, while requiring three times less computational cost during
inference (0.87→1012 FLOPs compared to 2.81→1012 FLOPs). See § 3.2 and App. A for a detailed
description of our experimental setup.

(a) ARC Challenge (b) ARC Easy (c) HellaSwag (d) MMLU

Figure 3: Downstream evaluation. Accuracy with respect to perplexity on (a) ARC Challenge,
(b) ARC Easy, (c) HellaSwag and (d) MMLU, for 1.3B parameter dense baselines trained on 266B,
1T and 2T tokens (empty symbols) and mixture models with 1.3B parameter experts and 4, 16 and
32 experts respectively (filled symbols). The models that have the same symbol shape have near
identical training and inference FLOPs.

megabytes per router resulting in truly minimal communication requirements. See A.4 for details
about the calculation of these numbers.

3.3 DOWNSTREAM EVALUATION

To demonstrate the applicability of our approach in real-world scenarios, we performed zero-shot
evaluation on a set of natural language processing (NLP) tasks, including ARC Challenge and ARC
Easy (Clark et al., 2018), HellaSwag (Zellers et al., 2019), SciQ (Welbl et al., 2017), and MMLU
(Hendrycks et al., 2020). Figure 3 shows both accuracy and perplexity for each task (see Appendix B
for details regarding perplexity and accuracy computation).

Specifically, our largest configuration, a model with 32 1.3B parameter experts, demonstrates better
performance on four out of five tasks, achieving gains of 3%, 2%, 3%, and 1% on ARC Challenge
(3a), ARC Easy (3b), HellaSwag (3c), and MMLU (3d), respectively, under the same inference cost.

Moreover, on the MMLU benchmark, our approach either beats the baseline or achieves the same
performance on 75% of the tasks (42 out of 56), as shown in Table 4.
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Perplexityは
一貫して良い

下流タスクでの評価結果は割愛
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Figure 3: Downstream evaluation. Accuracy with respect to perplexity on (a) ARC Challenge,
(b) ARC Easy, (c) HellaSwag and (d) MMLU, for 1.3B parameter dense baselines trained on 266B,
1T and 2T tokens (empty symbols) and mixture models with 1.3B parameter experts and 4, 16 and
32 experts respectively (filled symbols). The models that have the same symbol shape have near
identical training and inference FLOPs.

megabytes per router resulting in truly minimal communication requirements. See A.4 for details
about the calculation of these numbers.

3.3 DOWNSTREAM EVALUATION

To demonstrate the applicability of our approach in real-world scenarios, we performed zero-shot
evaluation on a set of natural language processing (NLP) tasks, including ARC Challenge and ARC
Easy (Clark et al., 2018), HellaSwag (Zellers et al., 2019), SciQ (Welbl et al., 2017), and MMLU
(Hendrycks et al., 2020). Figure 3 shows both accuracy and perplexity for each task (see Appendix B
for details regarding perplexity and accuracy computation).

Specifically, our largest configuration, a model with 32 1.3B parameter experts, demonstrates better
performance on four out of five tasks, achieving gains of 3%, 2%, 3%, and 1% on ARC Challenge
(3a), ARC Easy (3b), HellaSwag (3c), and MMLU (3d), respectively, under the same inference cost.

Moreover, on the MMLU benchmark, our approach either beats the baseline or achieves the same
performance on 75% of the tasks (42 out of 56), as shown in Table 4.
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Expertを増やすほど
良さそうだが

Denseに不利な設定

下流タスクでの評価結果は割愛



ルータの大きさについて

•ルータ：4.4MパラメタのLM
•直感：大きなルータにすると、
より良い振り分けができそう
•結果は変わらず
• 変わらなすぎて実験を疑いたくなる

SNLP2025 17
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Figure 4: Routing analysis. (a) Test perplexity over training steps for different router sizes using a
335M parameter model with 4 experts. We compare routers of sizes 335M (where the model routes
data for itself), 110M, 65M, and 4.4M parameters. (b) Test perplexity as a function of routing prefix
length during inference for 1.3B parameter model with 4, 16 and 32 experts. We examine how
reducing the prefix length M̂ used during inference affects performance when the data is partitioned
during training using a prefix size M → M̂ . (c) Test perplexity over training steps for a 335M
parameter model with 16 experts, comparing our proposed routing using TF-IDF document encoding
followed by SVD projection and balanced K-Means clustering.

3.4 ROUTING ANALYSIS

In this section we analyse the most critical component of SMALLTALK LM, the routing. In particu-
lar, we perform experiments to investigate the impact of the size of the router to the mixture model,
the impact of the size of the prefix and finally whether the EM algorithm presented in § 2 is critical
or it could be replaced by simple content based clustering.

Impact of Router Size One of the most critical findings of our work is the fact that the size of the

model used for routing does not impact the performance of the mixture (Figure 4a). This allows us
to utilize small router models which reduce dramatically the computational cost of routing during
training and inference without compromising the model’s performance.

In detail, we investigated the effect of router size on the performance of our method by experimenting
with a 335M parameter model configured with 4 experts, using four different router sizes for data
partitioning: a 335M parameter router (where the model routes data for itself, optimizing for the
data it handles best), and routers with 110M, 64M, and 4.4M parameters. All models were trained
with a batch size of 32 for 256, 000 steps, using a routing prefix length of 256 tokens, following the
same experimental setup as in § 3.2 (see Appendix A for more details about model architectures and
training parameters). Figure 4a illustrates the test perplexity wrt the number of training tokens for
these configurations. We observe that all router sizes perform practically identically.

Impact of Prefix Length An important hyperparameter for our mixture model is the length of
the context used for routing to the expert model. In our experiments, we use a prefix length of 256
which may be too large for some real-world applications like conversational AI. However, we show
in Figure 4b that SMALLTALK LM outperforms the dense baseline even when routing with shorter
prefixes. In particular, we show that even with prefixes of just 32 tokens ( 1

8 th of the length during
training) the model still outperforms the dense baseline.

Comparison With Routing Using TF-IDF An alternative approach might suggest that if a tiny
LLM suffices for routing, simpler methods such as TF-IDF encoding combined with balanced K-
Means clustering, as proposed by Gururangan et al. (2023), could be adequate. To test this hypoth-
esis, we trained a 335M parameter model using the routing strategy outlined in (Gururangan et al.,
2023): applying TF-IDF transformation to the text, followed by Singular Value Decomposition
(SVD) projection into a low-dimensional space, and then clustering using balanced K-Means.

We then trained 16 experts on these clustered results. Our findings reveal that routing with TF-
IDF encoding under performs when the prefix is short, indicating limitations of this simple routing
approach. As shown in Figure 4c, our proposed routing method significantly outperforms the TF-

8



振り分けに使う接頭辞のトークン数
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Impact of Router Size One of the most critical findings of our work is the fact that the size of the

model used for routing does not impact the performance of the mixture (Figure 4a). This allows us
to utilize small router models which reduce dramatically the computational cost of routing during
training and inference without compromising the model’s performance.

In detail, we investigated the effect of router size on the performance of our method by experimenting
with a 335M parameter model configured with 4 experts, using four different router sizes for data
partitioning: a 335M parameter router (where the model routes data for itself, optimizing for the
data it handles best), and routers with 110M, 64M, and 4.4M parameters. All models were trained
with a batch size of 32 for 256, 000 steps, using a routing prefix length of 256 tokens, following the
same experimental setup as in § 3.2 (see Appendix A for more details about model architectures and
training parameters). Figure 4a illustrates the test perplexity wrt the number of training tokens for
these configurations. We observe that all router sizes perform practically identically.

Impact of Prefix Length An important hyperparameter for our mixture model is the length of
the context used for routing to the expert model. In our experiments, we use a prefix length of 256
which may be too large for some real-world applications like conversational AI. However, we show
in Figure 4b that SMALLTALK LM outperforms the dense baseline even when routing with shorter
prefixes. In particular, we show that even with prefixes of just 32 tokens ( 1

8 th of the length during
training) the model still outperforms the dense baseline.

Comparison With Routing Using TF-IDF An alternative approach might suggest that if a tiny
LLM suffices for routing, simpler methods such as TF-IDF encoding combined with balanced K-
Means clustering, as proposed by Gururangan et al. (2023), could be adequate. To test this hypoth-
esis, we trained a 335M parameter model using the routing strategy outlined in (Gururangan et al.,
2023): applying TF-IDF transformation to the text, followed by Singular Value Decomposition
(SVD) projection into a low-dimensional space, and then clustering using balanced K-Means.

We then trained 16 experts on these clustered results. Our findings reveal that routing with TF-
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approach. As shown in Figure 4c, our proposed routing method significantly outperforms the TF-
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振り分けに使う接頭辞のトークン数を変えてみた

Dense超えには
32トークンは
必要そう



32トークンってどれくらい？
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まとめ
• MoEの計算
• LLMをExpertとみなしたMoEを提案
• 通信コストが削減できる
• 高価なGPUに頼らないで済む

•ルータには小型LMを使う
• 小型LMの尤度で入力系列をスコアリングし、最も確率の高いものを選択

•事前学習タスクでDenseよりも高い性能
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感想
•実験が事前学習に閉じており、事後学習への適用可能性に疑問
• SFT/DPOで振り分けが破綻しそう
• ICLRのレビューでも指摘されており、著者も認めている

• ICLRは気合で押し切った
• 事前学習と事後学習を一気通貫にやりたい気がする…
• 本勉強会でそういう論文が紹介される気がしている

•エキスパート（LLM）の数を自由に増減させられると嬉しそう
• 増やす：ドメイン適用（金融、医療、etc…）
• 減らす：推論時のコスト削減
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